software
Software is more than program. It consists of programs, documentations of any facet of the program and the procedures used to setup and operate the software system. The components of the software system are shown in the figure (1).

[image: image1]
 Software: - programs + Documentations + Operating Procedures

 Figure (1)

Any program is the subset of software and it becomes software only if documentation and operating procedures manuals are prepared. Program is the combination of source & object code. Documentation consists of different types of manuals as shown below:-

 Documentation manuals

[image: image2]
 Figure (2)

Operating procedures consists of instruction to setup and use the software system and instruction on how to react to system failure. List of operating procedures manuals is shown in

the figure (3).

Software Crisis
 Software crisis is the state of existing software which is not able to function in current environment due to changes in environment.
Factors contributing to software crisis:-

 1) Changes in data format .E.g.:- Y2Kproblem.

[image: image3]
 Figure (3)

(2) Software project management in many organizations is still amateurish and very few tools or techniques are used even for managing very large software projects.

(3) Documentation continues to be considered a bad job as a result of which if problem leaves in the middle of a project, it is difficult for others to continue the work.

(4) One of the main reasons for software crisis is lack of thrust for software testing. It is the test engineers who can contribute significantly to the software quality.

Examples of the software crisis are:-

Y2Kproblem, patriot problem, Ariane-5

The Birth of Software Engineering

During the initial days of computing, software development organizations didn’t use the systematic methodology for the development. The software development was considered as coding, though coding forms a very small percentage of total development effort. This non systematic approach led to the ‘software crisis’.

 In the year 1968, a conference sponsored by the NATO (North Atlantic Treaty Organization) science committee addressed the ‘software crisis’ that was prevailing in those days. The outcome of the discussions in that conference was “software development is not an art; it has to fall in the realm of engineering”. The term “software engineering” was introduced in this conference.

Basically software engineering defines a disciplined approach to software development .IEEE standards [IEEE 1990] defines software engineering as “the application of a systematic, disciplined, quantitative approach to the development, operation and maintenance of software i.e. the application of engineering to software”.

 According to software engineering, before starting the coding, one has to systematically approach the problem, one has to understand the requirements (what the software is supposed to do), carry out the design, do the coding, carry out the rigorous testing and if the software as per the requirements, release the software to the customer, subsequently, if the customer wants some changes-requirements or enhancements-then the software has to be modified.

Software applications

Software applications are grouped into eight areas for convenience as shown in the figure (4).

(i) System Software: - Infrastructure softwares come under this category like compliers, operating systems, editor drivers etc. Basically system software is collection of programs to provide service to other programs.

(ii) Real Time Software: - This software is used to monitor, control and analyze real world events as they occur. An example may be software required for weather forecasting. Such software will gather and process the status of temperature, humidity and other environmental parameters to forecast the weather.

(iii) Embedded Software: - This type of software is placed in “READ ONLY MEMORY”

of the product and control the various functions of the product. The product could be an aircraft, automobile, secaurity system, signaling system, control unit of power plants, etc.The embedded software handles hardware components and is also termed as intelligent software.

(iv) Business Software: - This is the largest application area. The software designed to process business application is called business software. Business software could be payroll, file monitoring system, employee management and account management. It may also be a data warehousing tool which helps us to take decisions based on available data.

(v) Personal Computer Software: - The software used in personal computers is covered in this category. Examples are word processors, computer graphics, multimedia and animating tools, database management, computer games etc. This is a very upcoming area and many big organizations are concentrating their effort here due to large customer base.

(vi) Artificial Intelligence Software: - Artificial intelligence software makes use of nonnumeric algorithm to solve complex problems that are not amenable to computation or straight forward analysis [PRESOI]. Examples are expert system, artificial neural network, signal processing software etc.

(vii) Web Based Software: - The software related to web application come under this category. Examples are CGI, HTML, JAVA, PERL, DHTML etc.

(viii) Engineering and Science Software: - Scientific and engineering application softwares are grouped in this category. Huge computing is normally required to process data. Examples are CAD/CAM packages, SPSS, MATLAB, Engineering pro, circuit analyzers etc.

 Software Application

 Figure (4)

Process-oriented software development
 To make the project successful, software development can’t be done on an ad hoc basis. Without a process orientation, development leads to fire-fighting resulting in chaos. A process under which a software development takes place is called software process which is must for a project to be successful.

Software Process

As shown in figure (5) to develop a product, a process is defined. The process takes the raw as input and produces a finished product.

[image: image4]
 The Process

 Figure (5)

The process defines the various steps (or stages) to be followed to convert the raw material into the finished product. For example, to manufacture a car, the process defines the step-by-step procedure to assemble the various parts such as the chassis, engine, steering, tyres etc.

 In case of software, there is no raw material (rather, the human brain is the raw material). As shown figure (6), the software process takes the problem definition as input and produces the software product.

As software development is a highly intellectual activity, it is very difficult to define precisely the software process. The process of software development is divided into various phases and in each phase; a set of activities is carried out to arrive at the end product.

[image: image5]
 The software process

 Figure (6)

Phases in software development life cycle

Each phase in the development process will have a defined input and a defined input and a defined output. The divide-conquer strategy works well, as managing individual phase will be easier and monitoring will also be effective.

 The development can be broadly categorized into the following phases:

· Software Requirement Engineering

· Software Design

· Implementation

· Testing

· Maintenance

Software Requirements Engineering

In this phase, the requirements of the client are obtained, analyzed, documented and validated. Utmost care has to be taken by the project team to obtain the requirements of the client to the highest degree of accuracy. As shown in the figure (7), the inputs to the requirements engineering process is the problem definition and the output is a validated Software Requirements Specification (SRS) document.

[image: image6]
 The Process of Software Requirements Engineering

 Figure (7)

The project team members have to discuss with the client in detail on the exact functionality of the software and also the performance and other non-functional requirements. After that, these requirements have to be documented and a document called software Requirements specifications (SRS) has to be written. After necessary interaction with client, it has to be ensured that the SRS document is as per the requirements of the client i.e. the document has to be validated.

Some of the mistakes made commonly are:

· To start the development work without even understanding the requirements correctly.

· Not to document the requirements and hence the requirements will be in the minds of the some people who interacted with the client and when they the project in halfway, the whole project will be in the trouble.

· Whenever any changes are made to be the requirements, not to incorporate them in the document as a result of which changes are not known to all team members.

· To accept a change asked by client without analyzing the likely impact of the change on the project development time and budget.

Sometimes, an apparently small change in requirements may result in major changes in the design of the software. So any change to be made the specification has to be discussed by the project team thoroughly. Also, whenever a change is to be made, the impact of this proposed change on the time frame, budget and quality to be analyzed.

So, the requirements engineering phase involves obtaining the requirements, documenting the requirements, validating the documented requirements and also defining the procedure for making the necessary changes in the requirements document.

Software Design

The system consists of both hardware and software. The functionality of hardware and software are to be separated out. After that, the detailed design of software and hardware are to be carried out.

The design process takes the SRS document as input and the output is a validated design document.

[image: image7]
 The Design Process

 Figure (8)

Software design involves development of the architecture, design of the algorithms, and data structure. Unlike in other engineering fields, in software design, there are no fixed formulas. Software design is highly intellectual activity involving exploration of different alternatives,

Studying the pros and cons of each alternative and choosing the best alternative based on some design criteria such as usability, performance, reliability etc.

With the advent of Object-Oriented Technology (OOT), Object-Oriented Design (OOD) is catching up. Using a standard methodology such as UML (Unified Modeling Language), the design has to be documented.

 The output of this phase is a design document giving the details of various modules and the details of logic and algorithms.

Implementation

In this phase, the design is converted into code. The input to the implementation process is the design document and output is the source code. Ideally, the design document prepared by the software architects should be given to the programmers and the programmers should be able to do the coding. To achieve this, a very detailed design document has to be prepared, which is not very easy. So, the programmers need to constantly interact with the designers or the designers also need to actively participate in the implementation.

[image: image8]
 The Implementation process

 Figure (9)

The coding has to be done in such a way that the testing would be easier and later, the maintenance would be easier. The programming languages to be used, the development tools to be used are decided at this stage, if not done earlier in the design stage or if not specified by the user.

The output of this stage is the code in a given programming language, with each of the units (smallest code segments) tested.

Testing

Testing consumes the highest amount of time in the development life cycle; however, it is given the least importance by the development teams. The reason is that testing is difficult.

 The foremost thing in testing is to test the functionality of the software. In addition to functionality, the software has to be tested to ensure that it meets the performance requirement, the reliability requirements and other requirements such as portability, learnability (ease of use) etc.

[image: image9]
 The Testing Process

 Figure (10)

The testing process is an iterative process which is shown in the figure (10). The source code is converted into an executable code and various test inputs are given. For every test input, the output is analyzed to check whether the program is functioning correctly. If there is the defect (bug), the defect is reflected in terms of a wrong output (or no output). The defect is analyzed, and the source code is modified and again testing is carried out with the test inputs. This process is repeated till the source code is defect-free (or almost).

 While testing the software, when defects are found, the source code has to be modified. Sometimes it may be necessary to modify the design or even the specifications. This makes software development an iterative process. A methodology has to be worked out so that the modifications to specifications, design, code etc. are done methodically.

For carrying out testing, the testing process is to be clearly defined, which involves development of a test plan, carrying out the testing as per the plan and documenting the test results in the form of a test report. The test plan has to specify the resources required for testing, the test tools to be used, the test cases (inputs to be given), the types of testing to be done etc.

The output of this stage is completely tested software, which meets the requirements specifications.

Maintenance

Once the software is released to the client and the client starts using the software, maintenance phase is entered. The developer has to keep track of the feedback from the client and the cost of the maintenance effort.

[image: image10]
 Versions of a Work Product

 Figure (11)
When the client reports a defect or when the client requests for a modification, the changes to the source code (and also the related documents such as SRS, design, document etc.) have to be done systematically. The work products (SRS, design document, source code etc.) have to be kept under ‘configuration control’. Many versions of these documents (work products) may need to be generated. In the figure (11), there will be version 1.0 from which version 1.1 will be generated version 1.1 may lead to two other versions-1.2 and 2.0.Unless a systematic procedure is followed to handle multiple versions, the work products will be unmanageable. Each version of the software work products has to be maintained with the required documentation. Making changes to the work products systematically is called configuration management.

The maintenance process involves configuration management of the work products, keeping track of the feedback from the client and also the effort spent on the maintenance.

Software Testing Process

In spite of the fact that software testing is a highly complex and time consuming activity, in most software project, testing is not given the necessary attention. Statistics reveal the nearly 30%-40% of the effort goes into testing–irrespective of the type of project, whereas hardly any time is allocated for testing.

Software testing is a highly complex activity- it is even difficult to say when testing is complete. In addition to functional testing of the product in the laboratory, the software has to undergo many other types of testing for performance, reliability, usability, portability, stress etc., depending on the type of product and the requirements.

Software should go through rigorous testing which ensures that a high quality product is delivered to the customer and maintenance costs are reduced to the minimum.

Psychology of Testing

According to psychology of software developers “testing is the process to prove that the software works correctly”.

This definition sounds very good, but it is not a good definition. This is the typical psychology of the testing. The persons who developed the software will always try to show that the software is working properly. So, he give only those inputs for which software works correctly or press only those keys by which the software does not crash. Such type of psychology is not acceptable when software launched in commercial environment.

According to practicing engineering “Testing is the process to prove that the software does not work.

Strictly, if the aim of the test engineer is to prove that the software does not work, then the testing process can be considered good. This type of psychology toward testing would bring out most of the defects (bugs).In fact, the SQA (software quality assurance) team and even user/client team try to use this definition while carrying out the testing. When this definition is used, one must encounter a practical difficulty.

So, a realistic definition of testing is

“Testing is the process to detect the defects and minimize the risk associated with the residual defects.”

Once the software product is reached a mature stage of development, one (test engineer) can start testing. He/She should keep track of number of bugs being detected and correcting the software. After a few days or weeks of testing, he comes to conclusion that the software is “good enough “to be released into the market i.e., there may be still some bugs undetected, but the risk associated with the residual defects is not very high. In such a case, one takes a decision to release the software to the customer or into the market

The objective of testing is to uncover as many bugs as possible. The testing has to be done without any emotional attachment to the software. If someone points out the bugs, it is only to improve the quality of the software rather than to find fault with one.
Testing team and Development team

 The development team of any organization tries to prove that the software works correctly. To overcome this difficulty, the development team should be different from the testing team. This ensures that the testing is done without any bias and maximum possible defects are found before the release of the software.

Because of the complexity of the testing, the test team must have sufficient manpower. In Microsoft Corporation, the ratio of development engineers to test engineers is 1:1. In NASA Goddard space flight centre, the ratio is 1:7 i.e., for every development engineer, there will be 7 test engineers. Hence, depending on the complexity of the project and criticality of the application, test team size will be different.

The test reports generated by the test team have to be looked into impartially by the project manager- the aim of the project manager is to ensure that the quality product is delivered.

Even if there is no separate QA/ testing team in any organization, it is desirable that the software is tested by people other than the developer. This will improve the quality of the software substantially.

Cost of Quality

The objective of every organization and every employee should be to deliver quality software.

But then, quality does not come free. This cost of Quality will have three important components.

Failure Cost

Failure cost is the cost of fixing the bugs. At the time of releasing the software to the customer, if the software has many bugs, then one need to spend a lot money on the maintenance of the software. This is the failure cost. One’s objective should be to reduce the failure cost to the maximum possible extent.

Appraisal Cost

Appraisal cost is the cost of assessing whether the software has any bugs. This cost is the cost incurred on testing the software before releasing it to the customer. To reduce failure cost, one may increase the appraisal cost, but there is a limit to the amount of testing to be done.

Prevention Cost

Prevention cost is the cost of modifying the process to avoid bugs. The project manager has to give a lot of thrust to the process so that the quality is built into the product in every stage of development. For instance, a customer reports many bugs in the software, instead of focusing only on removing the bugs or just increasing the effort on testing the product. A better option would be to find out the root cause and modify the process – the project manager can study whether introducing the software testing tools will help in better quality product. If so, the cost of the testing, the cost of training the engineers on these tools etc. will be the prevention cost.

Why Testing is difficult?

Testing is difficult because:-

· One needs to test the software for both right and wrong inputs and check the functionality as well as performance.

· One needs to give the inputs in such a way that each and every line of the code is tested.

· One needs to give inputs randomly and check that the software never fails.

· One needs to test the software as though a normal user is using it and check whether the necessary error messages, help etc. are provided.

· One needs to test the software by simulating the actual environment. For example, if a database application has to be accessed by 100 users simultaneously, it is not enough if one test the software for 2 or 10 users and declare that the software is working fine.

· In many cases, it is not possible to test the software in actual environment. For example, how do one test the software used in a satellite launch vehicle or a missile? One needs to do the entire testing only in a simulation environment.

As the complexity of the software increases, the time taken to do such exhaustive testing becomes enormous and exhaustive testing becomes humanly impossible.

To summarize, testing is difficult! To carry out the testing in a limited time with limited effort and resources, and try to bring out all the possible hidden defects is a challenging and intelligent task.

Levels of Testing

During the design stage, the software is divided into modules and each module is divided into units.

While testing, it is no good if one combines all the units into modules and all the modules into the system and then starts testing the entire system. A practical approach is to divide the testing process into different levels. To start with, each unit has to be tested separately, and then the modules are tested. Then the modules are combined together and the system is built and tested.

In the figure (12), each level of testing is for testing a specific entity. Unit testing is done to test the source code. Integration testing is done to test the design. System testing is done to test the SRS. And finally, the acceptance testing is done to test the client/user requirement.

Unit Testing

A unit is the smallest entity in the software which can be a page, menu or a module. It is the smallest testable part of an application. Every unit has to be tested separately to check whether it is as per the specifications. As it is not possible to be test a unit individually, addition piece

[image: image11]
 Levels of Testing

 Figure (12)

of code may need to be written to test the units. Unit testing is normally done by the development engineers themselves.

Module Testing

A module is an independent entity in the software. The tested units are integrated into a module and each module is tested separated for the specifications.

 After completion of testing a module, a module-level test report has to be prepared. Once every module is working as per requirements, the next phase of testing will start i.e., integration and system testing.

Integration and System Testing

After the modules are tested, the modules can be integrated together. It is very difficult to integrate all the modules together and start testing, as it would be very difficult to do the debugging. The integration has to be done systematically by incremental building and testing in steps. Once all the modules are integrated together, system testing is carried out for functional and non-functional requirements.

When the entire product or a major portion of it is tested at once, this process is called system testing.
Acceptance Testing

After the system testing is completed, the software is tested by the client/user. This is known as acceptance testing. Acceptance testing can be done either at the developer’s premises or client premises.

[image: image12]
 Testing Process

 Figure (13)

Testing Approaches

In a large software projects, it is impractical to integrate all the modules in one shot and start testing the software as a whole. The system has to be built in stages and the product has to be built incrementally carrying out testing on each incremented software. Such a systematic approach helps in easier debugging. Generally used approaches are:-

Top down Approach

It is basically an approach where modules are developed and tested starting at the top level of the programming hierarchy and with the lower levels.
Bottom Top Approach

As the name suggests, it is just opposite to top down approach. This process starts with testing the low level modules first and continues with the upper levels.
Functional Testing

Functional Testing is the testing in which functionality of the module is tested and structure is not considered. Test cases based on specifications and internals of the modules are not written. Thus, functional testing refers to testing, which involves only observation of the output for certain input values. There is no attempt to analyze the code which produces the output. Therefore, functional testing is also referred to as black box testing.

Structure Testing

It is used to test the implementation of the program. Here, the source is looked into for testing the software. Structural testing involves three types of coverage which are as follows:

· Statement coverage

· Branch coverage

· Path coverage

· Statement coverage

In this coverage, Each and every statement is tested. It is also found out that how many times each line in the code is executed.

· Branch Coverage

In the branch coverage, each and every condition is taken, and Inputs are given in such a way that each branch is executed at least once.

E.g. If (a>b && b<5)

To test this branch, input for a and b should be given in such a way that a>b is true and false; b<5 is true and false.

· Path coverage

To test loops, this is required. For example:-

The loop statement ‘for(i=0; i<=100; i++)’ is executed 101 times. Does the programmer really

want 101 times or only 100 times. Invariably programmers make mistakes at the boundary values. So, testing has to be done at loop boundaries.

Mutation Testing

Mutation testing is required to ensure that the software does not fail. It is also a good debugging mechanism. After the software works correctly, mutation testing can be done to simulate wrong inputs.

In mutation testing, program is modified (or logic is changed) slightly to obtain mutants of the program. Different the mutants are tested with the same test cases. If the mutants fails, and the actual program works correctly, confidence is gained in the program, and test cases are considered as good i.e. different mutants should give different results.

Mutation testing is very useful for the developers to debug the programs. It is important to note that only one mutant has to be created at a time, for effective debugging.

Regression Testing

When a defect is reported in the software, the developer makes some changes to the software to remove that defect.

 It is likely that the change made in the code may lead to another defect that may not be visible immediately. So, whenever a change is made to the source code, one has to ensure that there are no ill effects of the on the other parts of the software. Regression testing is done precisely to ensure that the changes made in one part of the software have no ill effect on the other parts of the software.

Whenever a change is made to the source code, a set of pre- defined test cases has to be run to check whether any other portion of the software is affected.

For example:-

#include<iostream.h>

#include<conio.h>

Void main()

{

 int x, y;

clrscr();

cout<<”enter the value of ‘x’:-“;

cin>>x;

y= x*x;

cout <<y;

if (y==100)

cout<<”alarm: value of x is 10”;

}

Initially, program takes a number as input, squares that number and checks whether square of that is equal to 100 or not. If it is 100, it prints a message.

If the value of y is changed as cube of x instead of square of x i.e. y=x*x*x. Now program will not work properly for same’ if ‘statement. So, it is very important that even if one change one line of the code, one need to test the software again thoroughly. This re-testing is called regression testing.

Types of Testing

To release a quality product, the software has to be tested in such a way that it will meet all the requirements of the requirements of the user. The software has to be tested in the actual environment in which the user will install the software. The software installations may differ – number of users, type of users, operating system, network environment etc. Based on these varying environmental requirements, the test plan has to be prepared in such a way that these issues are taken care of. Considering these all issues various types of testing is carried out on the software. Types of the testing are given below:-

Black Box

In the black box testing, the structure of the program is not considered at all. The software is considered as black box to which defined inputs are given and from which defined outputs are obtained.

In this type of testing, one is only carrying out the functional testing. He/She should not be worried about the internal structure of the program. This method is generally followed while carrying out acceptance testing when the end user is not a software developer but only an IT user.

[image: image13]
 Black box Testing

 Figure (14)

The test team has to carry out black box testing rigorously; the way the end user tests and uses

the software. Initially, the testing has to be done in the lab (alpha testing) and then at the user site (beta testing). The duration of alpha and beta testing are to be fixed during planning stage based on the complexity of the software and the number of functions to be tested.

White Box testing

In white box testing, the structure of the program is taken into consideration. The objective is to ensure that each and every line of the code is tested. For example:-

If (i<5 && j>6)

 Do this;

else

 Do that;

If the test case

 i=3 and j=7

is given as input, only the true condition is satisfied and the corresponding statements are executed. A test case that makes the condition false also needs to be given, such as i=6 and j=3.

White box testing is much more involved than the black box testing. For developing highly reliable software, white box testing is a must.

Gorilla Testing

If the software developed by the team is given to a gorilla for testing. The gorilla will randomly press some keys (which may be irrelevant from software usage point of view) and statistically speaking, sometimes it may press the keys that are acceptable inputs.

This type of testing would bring out the defects when inputs are given. Ideally, the software should not misbehave when wrong inputs are given. If software fails, then the user will lose the confidence. Gorilla testing is used to check whether defensive programming has been done or not-through defensive programming, software is made to tolerate wrong inputs.

Alpha and Beta Testing

The terms alpha and beta testing are used when the software is developed as a product for anonymous customers. Hence formal acceptance testing is not possible in such cases. However, some potential customers are identified to get their views about the product. The alpha tests are conducted at the developer’s site by a customer. These tests are conducted in a controlled environment. Alpha testing may be started when formal testing process is near completion.

The beta tests are conducted by the customers/end users at their sites. Unlike alpha testing developer is not present here. Beta testing is conducted in a real environment that cannot be controlled by the developer. Customers are expected to report failure, if any, to the company. After receiving such failure reports, developers modify the code and fix the bug and prepare the product for final release.

Most of the companies are following this practice firstly, they send the beta release of their product for few months. Many potential customers will use the product and may send their views about the product. Some may encounter with failure situation and may report to the company. Hence, company gets the feedback of many potential customers. The best part is that the reputation of the company is not at stake even if many failure situations are encountered.

Performance Testing

Performance testing focuses on the performance parameters such as the transaction response time, throughput etc. For example, in database systems the response time relates to the time to obtain `a report after clicking on a specific button. It may be difficult to specify the response times for each and every form/report, but the time that can be tolerated generally should be specified. For example, 30 seconds is a reasonable period, but not 2 minutes.

In many projects, the client does not specify the timing constraints during the SRS stage, but introduces these requirements later on. This leads to major difficulties because; sometimes the total design has to be changed to meet performance requirements. Performance constraints are major risk items in many projects.

 Stress Testing

 Stress testing is done to test the software at its limits of performance. For example, if the software is a DBMS package that is expected to give a response time within the specified limit for 16 simultaneous users, the software has to be tested while 16users are using the database at the same time. Generally it is not done and the software is tested for 4 or 5 users and delivered to the client. When the clients starts using the software in actual environment, the users have to wait for long time to get their reports (poor response times) and the client rejects the software.

Stress testing is also to be done for systems that involve communication media. For instance, if the specification says that the communication link should have a minimum data rate of 56 kbps, the system has to be tested with just that bandwidth.
Acceptance Testing

After the system testing is completed, the software is tested by the client/user. This is known as acceptance testing. Acceptance testing can be done either at the developer’s premises or client premises.

Test Plan

 This plan should contain all the details of required resources, the testing approaches to be followed, the testing methodologies, the test cases. It is prepared during the project planning stage.

Test cases

Test cases can be defined as sets of inputs parameters for which the software will be tested. As shown in figure (15), test cases are selected, the program is executed and the results are compared with the estimated results.

[image: image14]
 Testing process using Test cases

 Figure (15)

Consider the example of sorting a set of given strings. The string can be simply letters, or words or sentences. All these possible string have to be given as inputs and the software has to be tested. It has to be ensured that the software does not malfunction (or the system does not crash) when a very large string is given as input.

All the combinations of the inputs must be checked. If this is done, it is known as exhaustive testing. It is costly, time consuming and impossible in many cases, so it is highly impracticable. So, a subset of all combinations is used for testing –these are known as test cases.

Test cases have to be designed based on two criteria: reliability and validity. A set of test cases is considered to be reliable if it detects all errors. A set of test cases is considered as valid if at least one test case reveals the errors.

When is Testing complete?

It is very difficult to say when testing is complete. Three criteria used in practice for completion of testing [Pressman 1994] are:-

· When one run out of time.

· When one run out of money.

· Based on statistical criteria.

In practice, unfortunately, the first two criteria are followed. During the planning stage, certain time and money (or efforts) are allocated for the testing process. The test team keeps testing the software, and when they run out of time (or money), the product is delivered (to avoid the penalty for late delivery). Most managers do not realize that this is a very dangerous practice because if the software fails at customer’s site, the reputation of the organization is at stake.

A more practical approach for declaring that the testing is complete is to use the third criterion. After the coding is completed, and testing begins initially many defects are detected. Slowly, the number of defects found in a given time (say, in a day or week) keeps reducing. The graph showing the number of defects found every week will be as in the figure (16). If the number of defects found per week remains less than a predefined threshold consecutively for three weeks, then the software can be considered a mature product and released to the client.

Taking a decision on ‘when testing is complete’ is very difficult. A systematic approach to tracking the bugs found and analyzing the bug report will help in making this decision.

Manual Testing and its Limitation/Drawbacks

In many organizations, software testing is carried out manually. After the product reaches a mature stage, the test team generates various test cases and manually tests each and every feature. If a defect is found, the software is modified. Again, using the test cases, the software is tested. Such a manual testing is not advisable for the following reasons:-

· Manual testing is very time consuming. The same set of operations needs to be done repeatedly, and hence the test engineers are likely to get bored when the testing has to be done repeatedly. So manual testing is error-prone.

· Regression testing has to be done to ensure that changes in one portion of the software have no ill effects on other portions of the software. The entire testing process needs to be repeated whenever a change is made to any portion of the software.

[image: image15]
 Completion of testing based on defects Found per week

 Figure (16)

· To do performance testing, many resources are required, both computers and people. For example, to test a client/ server application, the client software has to be run on different machines and one person has to test each client application to test the performance of the software when multiple users use the same software simultaneously. On the other hand, automated tools facilitate running the software from a single client machine, resulting in saving in terms of infrastructure and manpower.

· Even to manage the testing process is complicated as the testing has to be planned, bugs have to be tracked and reliability analysis has to be performed. Automated test tools help in managing the testing process effectively.

 [image: image16.png]
[image: image17.png]
[image: image18.png]
[image: image19.png]
[image: image20.png]
Operating procedures

Documentation

Programming

Testing

Implementation

 Design

Analysis /

Specification

Documentation

Operating Procedures

User Manuals

Operational System

Validated SRS

Document

Software

Requirements

Engineering

Problem

Definition

 Software

 Product

Problem

Definition

Software Process

Finished product

Process

Raw Material

 Software

 Requirement

 Specification

 Validated

Design

 Document

 Design

 Testing

Executable Code

Source code

Source code

Implementation

Validated Design

 Document

 Test Input

Test Output

Defect Analysis

 Version 1.0

 Version 1.1

 Version 1.2

 Version 1.3

 Version 2.0

Scientific

 &

 Engg.

 S/W

 Web

Based

 S/w

 Artificial

Intellige-

 nce

 S/W

Personal

Compu-

 ter

 S/W

Business

 S/W

Embed-

 ded

 S/W

System

S/W

 Real

 Time

 S/W

Acceptance Testing

Client needs

System Testing

SRS

Integration Testing

Design

Unit Testing

Code

Client Requirements

Acceptance Test

Plan

SRS

System Test Plan

Acceptance Test

System Test

Interconnect

modules

Module Test

Combine units

 into modules

Test Unit

System

under test

Output test data

Input test data

Analyze Test results

Execute Test cases

Select Test cases

Threshold

Week

No. of

defects

found

per

week

